Brain-Machine Interfaces In Biometric Verification

Brain-machine interfaces (BMIs) show continued promise for applications in neuroprosthetics, neurogaming, and brain-to-brain communication. One area of BMIs often overlooked is in biometric verification. Biometric verification relies on identifying persons based on their biological traits such as fingerprints, irises, faces, etc. Using either EEG (electroencephalography) or fMRI (functional magnetic resonance imaging), BMIs have shown to be effective in distinguishing the identity of subjects with a near-perfect classification rate.

To date, there have been a number of BMI biometric studies that make use of identifiable brain patterns to classify individuals. BMI biometric protocols offer idiosyncratic advantages to comparable biometrics, including a volitional requirement, continuous verification, covert warnings, universality, and multi-task authentication. However, a number of basic security questions remain unanswered in this young field. Can authorizing thoughts be mimicked? Are brain patterns of identical twins distinguishable? Is there a way to ensure brainwaves remain identifiable throughout a person’s lifetime? Before adoption of any mainstream BMI-biometric innovations, it may be wise to ensure the security of BMI biometrics is as strong as the initial research suggests.

1. BMI Biometrics: What do we know?

 

2. BMI Biometrics: What don’t we know?

 

3. Security Applications: Beyond Biometrics

4. Alternative Modalities in BMI Biometrics

 

  1.       http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445586/
  2.       http://www.nature.com/nmeth/journal/v11/n6/full/nmeth.2936.html
  3.       http://www.ajol.info/index.php/amhsr/article/view/112158
  4.       https://www.cert.org/insider-threat/best-practices/
  5.       D&d – Need to find this citation still again
  6.       – Lost this citation too
  7.       http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=812278
  8.       http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=813403
  9.       http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4107575
  10.   https://www.researchgate.net/profile/B_Kumar8/publication/224194495_Subject_identification_from_electroencephalogram_(EEG)_signals_during_imagined_speech/links/54a97f8a0cf2eecc56e6c45f.pdf
  11.  http://www.theregister.co.uk/2014/12/29/german_minister_fingered_as_hackers_steal_her_thumbprint_from_a_photo/
  12.  http://www.sciencedirect.com/science/article/pii/S0921889014002632
  13.   S. Marcel, J. R. Millan. Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4):743–748, April 2007.
  14.   http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6199830&tag=1
  15.   http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7126357&tag=1
  16.   http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7314193
  17.   http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6994220
  18.  https://kar.kent.ac.uk/49535/1/PIN_ijcb.pdf http://www.inderscienceonline.com/doi/abs/10.1504/IJBM.2014.060960
  19.   http://www.researchgate.net/profile/Patrizio_Campisi/publication/282122165_EEG_Biometrics_for_User_Recognition_using_Visually_Evoked_Potentials/links/56039ec808ae08d4f171779c.pdf
  20.   http://www.sciencedirect.com/science/article/pii/S0925231215004725
  21.   http://link.springer.com/chapter/10.1007/978-3-319-19713-5_13#page-1
  22.  http://download.springer.com/static/pdf/440/chp%253A10.1007%252F978-3-642-27733-7_9145-2.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Freferenceworkentry%2F10.1007%2F978-3-642-27733-7_9145-2&token2=exp=1447987756~acl=%2Fstatic%2Fpdf%2F440%2Fchp%25253A10.1007%25252F978-3-642-27733-7_9145-2.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Freferenceworkentry%252F10.1007%252F978-3-642-27733-7_9145-2*~hmac=be7c889f4ec177bd4096057e765bb2169f3614dfd4323d2e28787a2e3b92393c
  23.   http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7318985
  24.  http://www.ncbi.nlm.nih.gov/pubmed/19163618   

http://www.igi-global.com.proxy.libraries.rutgers.edu/gateway/chapter/full-text-pdf/7471

 

  1.   http://www.metaljournal.com.ua/assets/Journal/MMI-6/060-Jianfeng-Hu.pdf
  2.   http://csee.essex.ac.uk/staff/palaniappan/1930378.pdf
  3.   http://ieeexplore.ieee.org.proxy.libraries.rutgers.edu/stamp/stamp.jsp?tp=&arnumber=5634487
  4.   – Need to find citation for this one as well  
  5.   Auditory potentials – https://etd.ohiolink.edu/!etd.send_file?accession=ucin1439300974&disposition=inline
  6.   http://ojs.bibsys.no/index.php/NIK/article/view/243
  7.   http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7280344
  8.   http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7318985
    1.   Facial movements, eeg authentication using artifacts http://link.springer.com/chapter/10.1007/978-3-319-07995-0_34#page-1
    2.   Multi-level approach based on eye-blinking http://www.sciencedirect.com/science/article/pii/S0167865515002433
    3.   http://www.nature.com/neuro/journal/v18/n11/full/nn.4135.html
    4.   DOI is good  http://www.nature.com/nphoton/journal/v8/n6/full/nphoton.2014.107.html
    5.   DOI vs fMRI – http://www.ncbi.nlm.nih.gov/pubmed/23578579

    38.    http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1619442

2 thoughts on “Brain-Machine Interfaces In Biometric Verification”

  1. An interesting and useful project. I look forward to participating. There is no noticeable way to subscribe or sign up for the airdrop at lesst that i can see when viewing the website on mobile.

  2. Interesting read
    Yes sure, its very important to ensure the security of BMI biometrics to be as strong as the research suggests due to the current rise in data and security breaches and cyber-attacks

Leave a Reply

Your email address will not be published. Required fields are marked *