Preventing AI From Hacking Human Brains

Can we integrate brainwaves with a blockchain to prevent hacking by artificial intelligence?
Submitted to Nature on May 28th, 2015 

In the last issue of Nature (28th May 2015) a piece called ‘Robotics: Ethics of artificial intelligence’ raised awareness for the latest advances in intelligent machines and some of the possible consequences for society. Several reputed scientists commented on these advances and highlighted a series of solutions that are undoubtedly of major interest for any reader. Here we highlight recent advances in neuroscience that significantly blur the traditional boundaries between AI, computer science and neuroscience, but that will soon have major consequences for the society.

While AI traditionally works towards the goal of developing more advanced forms of computing, neuroscience research has been making significant advances in combining the activity of multiple brains to compute solutions for problems. For example, we have previously proposed that multiple interconnected brains may allow for new forms of computation (Nicolelis 2011, Cicurel and Nicolelis 2015) that cannot be achieved by Turing machines (Siegelman 1995). Following this initial insight, we and others demonstrated that living brains of rats (Pais-Vieira et al., 2013, Deadwiler et al 2013), monkeys (Ifft et al., 2014), and humans (Rao et al., 2014) can be interconnected to allow solving multiple different problems. These advances are quickly leading towards the more intricate reality of complex computation and multi-brain communication using Brainets (Ifft et al2014).

Brainets are defined as groups of interacting brains that cooperate towards a common goal (Nicolelis 2011). The recent developments observed in non-invasive brain stimulation and recording techniques, combined with the swift development of brain-to-brain interfaces, demonstrate that a world wide brain internet is no longer a far fetched idea. A fundamental problem for a society using a brain based world wide web would then be to prevent AI from hacking human brains.

One of us has recently proposed that the use of blockchains a future world wide brainet could prevent attacks from non-living entities (Mauro, 2015), and more broadly, from the Singularity (Kurzweill in Neuman 1958). Blockchains are networks were the history of each individual node can be traced and, based on its record, the weight of a specific node can be updated. An unweighted blockchain system is used to secure bitcoin transactions (Nakamoto, 2008), which prevents double spending of money. For brainet blockchains, the brain’s ability to both encode and decode information would ensure network security. First, the individuality and complexity of each brain activity would be used to encrypt information. Then, brain–to-brain communication combined with other individual markers (e.g. visual and tactile recognition) would ensure that only living, trustable nodes (i.e. brains) would be allowed to remain on the brainet. Attacks by AI would be chronicled on the blockchain, but neurological barriers to computation would prevent total AI takeover.

On a smaller network, brainet blockchains can be used to prevent attacks by lethal autonomous weapon systems (LAWS). The main fear regarding LAWS is that they will turn on their operators (Future of Life, 2015). For example, a LAWS designed to “eliminate all terrorists” may find that it can perform its job most effectively by eliminating those who have the authority to shut it down– namely, its operators. Brainet blockchains can automatically re-distribute authority when nodes are eliminated. The anonymity offered by advanced blockchain innovations would protect nodes before authority is re-distributed (Maxwell, 2013).

In conclusion, recent neuroscience advances are demonstrating first, that interconnected brains can perform multiple computational tasks, allowing for the appearance of a world wide brainet; and second, that such brainet could use blockchains to prevent attacks from non biological entities.

References
1 – Robotics: Ethics of artificial intelligence, Nature 2015, 28th May
2-Nicolelis 2011 Beyond boundaries
3-Siegelman 1995 Science
4-Pais-Vieira et al., 2013 BBI paper
5-Deadwiler et al., 2014?
6-Ifft et al 2014 sfn Abstract with monkey brainet (Arjuns paper?)
7-Rao et al., 2014
8-Mauro K, 2015 Grand Scholars Challenge
9-Kurzweill in Neuman 1958 Singularity
10-Nakamoto 2008

11-https://www.whitehouse.gov/blog/2014/10/09/brain-initiative-and-grand-challenge-
scholars

12-Maxwell, 2013 – https://bitcointalk.org/index.php?topic=279249
13-Future of life- : http://futureoflife.org/static/data/documents/research_priorities.pdf

2 thoughts on “Preventing AI From Hacking Human Brains”

  1. Serious ethical issues are emerging around this field of brainet and it’s not too early to start thinking about ways in which brain-machine interfaces might be abused. To me I think advances in interconnected brains may lead to brainjacking,” which involve the malicious manipulation of brain implants. Hackers could go in and control a person’s movements.
    Its a cool thing anyway if blockchain could be made to prevent AI from interfering

  2. Serious ethical issues are emerging around this field of brainet, and it’s not too early to start thinking about ways in which brain-machine interfaces might be abused. To me I think it may lead to brainjacking,” which involve the malicious manipulation of brain implants. Hackers could go in and control a person’s movements. Its a cool thing if blockchain could be made to prevent AI from interfering

Leave a Reply

Your email address will not be published. Required fields are marked *